欢迎光临广州某kb体育限公司官网!
钣金加工设备源头制造kb体育高新技术企业 欧盟标准 双效合一
全国咨询热线:400-123-4567
当前位置: kb体育 > 新闻资讯 > 公司动态

钣金构件可展开表面的三种展kb体育开方法

时间:2023-09-13 17:01:08 作者:小编 点击:

  kb体育钣金构件尽管形状复杂多样,但大多由基本几何体及其组合体构成。其中:基本几何体可分为平面立体及曲面立体两种。常见的平面立体(主要有四棱柱、截头棱柱、斜平行面体、四棱锥等)及其平面组合体如下图(a) 所示,常见的曲面立体(主要有圆柱体、球体、正圆锥、斜圆锥等)及其曲面组合体见下图(b)。由下图(b)所示的基本曲面立体钣金构件可以看出,有一种是由一条母线(素线:直线或曲线) 绕一固定轴线旋转,形成的旋转体。旋转体外侧的表面,称旋转面。圆柱、球、正圆锥等都是旋转体,其表面都是旋转面,而斜圆锥体及不规则的曲面体等就不是旋转体。显然,圆柱体是一条直线(母线)围绕着另一条直线始终保持平行和等距旋转而成。正圆锥体是一条直线(母线)与轴线交于一点,始终保持一定夹角旋转而成。球体的母线是一条半圆弧,以直径为轴线旋转而成。

  形体表面分可展表面和不可展表面两种。要判断一个曲面或曲面的一部分是否可展,可用一根直尺靠在物体上,旋转尺子,看尺子能否在某个方向上和物体表面全部靠合,如果能靠合,记下这一位置,再在附近任一点选定一个新的靠合位置,如果每当靠合后的尺子所在直线都互相平行,或者都相交于一点(或延长后交于一点),那么该物体的被测量部位的表面就是可展的。也就是说:凡表面上相邻两条直线(素线)能构成一个平面时(即两条直线平行或相交),均可展开。属于这类表面的有平面立体、柱面、锥面等;凡母线是曲线或相邻两素线是交叉线的表面,都是不可展表面,如圆球、圆环、螺旋面及其他不规则的曲面等。对于不可展表面,只能作近似展开。

  可展表面的展开方法主要有三种方法,即:平行线法、放射线法及三角形法。其展开操作的方法如下。

  按照棱柱体的棱线或圆柱体的素线,将棱柱面或圆柱面划分成若干四边形,然后依次摊平,作出展开图,这种方法叫平行线法。平行线法展开的原理是:由于形体表面由一组无数条彼此平行的直素线构成,所以可将相邻的两条素线及其上下两端夹口线所围成的微小面积,看成近似的平面梯形(或长方形),当分成的微小面积无限多的时候,则各小平面面积的和,就等于形体的表面积;当把所有微小平面面积按照原来的先后顺序和上下相对位置,不遗漏地、不重叠地铺平开来的时候,截体的表面就被展开了。当然,不可能把截体表面分成无限多部分小平面,但是却可以分成几十块乃至几块小平面。

  凡属索线或棱线互相平行的几何体,如矩形管、圆管等,都可用平行线法进行表面展开。下图为棱柱面的展开。

  各点向右引平行线各点;5.用直线连接各点,即得展开图。下图所示为斜截圆柱体的展开。作展开图的步骤如下:

  1.作出斜截圆柱体的主视图和俯视图。2.将水平投影分成若干等份,这里分为12等份,半圆为6等份,由各等分点向上引垂直线,在主视图上得出相应的素线.将圆柱底圆展开成一条直线(可用πD计算其长度),作为基准线等份,截取相应的等分点(如a、b等)。4.自等分点向上引垂线,即圆柱体表面上的素线分别引平行线,... ,7,即展开面上素线.将所有素线的展开图。再以同样的方法画出另一半的展开图,即得所求的展开图。由此,可以清楚地看出平行线展开法有如下特征:1.只有当形体表面的直素线都彼此平行,而且都将实长表现于投影图上时,平行线.采用平行线法进行实体展开的具体步骤为:任意等分(或任意分割)俯视图,由各等分点向主视图引投射线,在主视图得一系列交点(这实际上就是把形体表面分成若干小部分);在与(主视图)直素线相垂直的方向上截取一线段,使其等于截面(周)长,且照录俯视图上各分点,过此线段上的各照录点引此线段的垂线与由主视图中第一步所得交点所引的素线的垂直线对应相交,再把交点顺次相连接(这实际上就是把由第1步所分成的若干小部分依次铺平开来),便可得展开图。

  放射线法展开的原理是:把形体任意相邻的两条素线及其所夹的底边线,看成一个近似的小平面三角形,当各小三角形底边无限短,小三角形无限多的时候,那么各小三角形面积的和与原来的截体侧面面积就相等,又当把所有小三角形不遗漏、不重叠、不折皱地按原先左右上下相对顺序和位置铺平开来的时候,则原形体表面也就被展开了。

  2.作锥面上的素线,方法是将底圆作若干等分,这里作12等分,得1, 2,…,7各点,从这些点向上引垂直线,与底圆正投影线相交,再将相交点与锥顶O连接,与斜面相交于1,2,…,7各点。其中2kb体育,3’,…,6几条素线.以O为圆心,O

  为半径画出扇形,扇形的弧长等于底圆的周长。将扇形12等分,截取等分点1,2,…,7,等分点的弧长等于底圆周等分弧长。以O为圆心,向各等分点作引线各点作与ab相平行的引线,与Oa相交,即为O

  各相交点的垂直距离为半径作圆弧,与O1, O2,…,O7等对应素线.用光滑曲线连接各点,即得正圆锥管顶部斜截的展开图。放射线法是很重要的展开方法,它适用于所有锥体及锥截体构件的展开问题。尽管所展开的锥体或截体千形百态,但其展开方法却大同小异,方法可归纳如下。

  1.在二视图中(或只在某视图中)通过延长边线(棱线)等手续完成整个锥体的放样图,当然对于带有顶点的截体是无需这一步的。

  2.通过等分(或不等分而任意分割)俯视图周长的方法,作出各等分点所对应的过锥顶的素线(包括棱锥的侧棱和侧面上过顶点的直线),这一步的意义在于分割锥体或截体表面成若干小部分。

  3.应用求实长线的方法(以旋转法为常用),把所有的不反映实长的素线、棱线,以及与作展开图有关的直线一一不漏地求出实长来。

  4.以实长线为准,作出整个锥体侧表面的展开图,同时作出所有放射线.在整个锥体侧面展开图的基础上,以实长线为准,再画出截体的展开图。

  三角形法展开是将制件表面分成一组或多组三角形,然后求出各组三角形每边的实长,再把这些三角形依照一定的规律按实形摊平到平面上而得到展开图,这种画展开图的方法称为三角形法。尽管放射线法也是将钣金制品表面分成若干三角形来展开的,但它和三角形法不同的地方主要是三角形的排列方式不一样。放射线法是将一系列三角形围绕一个共同的中心(锥顶)拼成扇形来作展开图的;而三角形法是根据钣金制品的表面形状特征来划分三角形的,这些三角形不一定围绕一个共同的中心来进行排列,很多情况下是按W形来排列的。另外,放射线法只适用于锥体,而三角形法可适用于任何形体。

  三角形法虽然适用于任何形体,但由于此法比较繁琐,所以只有在必要时才采用。如当制件表面无平行的素线或棱线,不能用平行线法展开,又无集中所有素线或棱线的顶点,不能用放射线法展开时,才采用三角形法作表面展开图。下图为凸五角星的展开。

  用三角形法作展开图的步骤如下:1.用圆内作正五边形的方法画出凸五角星的俯视图。2.画出凸五角星的主视图。图中OA、OB即OA、OB线的实长,CE为凸五角星底边的实长。

  3.以OA为大半径R,OB为小半径r,作出展开图的同心圆。4.以m的长度在大小圆弧上依次度量10次,分别在大小圆上得到A…和B…等10个交点。

  5.连接这10个交点,得出10个小三角形(如图中△AOC),这就是凸五角星的展开图。

  下图所示“天圆地方”构件,可以看作是由四个锥体的部分表面和四个平面三角形组合而成的。这类构件的展开,如果应用平行线法或放射线法,是可以的kb体育,但是作起来都比较麻烦,为了简便易行,可以使用三角形法展开。

  2.由二视图前后左右对称关系来看,平面图右下角的1/4,与其余三部分相同,上口和下口在平面图中反映实形和实长,由于GH是水平线,因而在主视图中相应线却在任一投影图中都不反映实长,这就必须应用求实长线的方法求出实长来,这里采用了直角三角形法(注:A1等于B1,A2等于B2)。在主视图旁,作两个直角三角形,使一直角边CQ等于h,另一直角边为A2和A1,则斜边QM、QN即实长线。这一步的意义在于找出所有小三角形边线长,进而分析各边线的投影是否反映实长,倘若不反映实长,则必须用求实长的方法一一不漏地求出实长。

  3.作展开图。作线段AxBx使其等于a,以Ax和Bx分别为圆心,实长线

  )为半径分别画弧交于1x,这就作出了平面图中小三角形△AB1的展开图;以1x为圆心,平面图中S弧长为半径画弧,与以Ax为圆心,实长QM(即l

  ,这就作出了小三角形OA22的展开图,依此类推,一直作出所有小三角形的展开图为止。E

  1.正确地将钣金构件表面分割成若干小三角形,正确地分割形体表面是三角形法展开的关键,一般来说,应具备下列四个条件的划分才是正确的划分,否则就是错误的划分:所有小三角形的全部顶点都必须位于构件的上下口边缘上;所有小三角形的边线不得穿越构件内部空间,而只能附着在构件表面上;所有相邻的两个小三角形都有而且只能有一条公共的边;中间相隔一个小三角形的两个小三角形,只能有一个公共顶点;中间间隔两个或两个以上小三角形的两个小三角形,或者有一个公共顶点或者没有公共顶点。

  根据上述分析可知:三角形展开法能够展开一切可展形体的表面,而放射线法仅限于展开素线交汇于一点的构件,平行线法也只限于展开素线彼此平行的构件。放射线法与平行线法可看成是三角形法的特例,从作图的简便性来看,三角形法展开步骤较为繁琐。一般说来,三种展开方法按以下条件选用。1.如果构件的某一平面或曲面(不管其截面封闭与否),上所有的素线在一投影面上的投影,都表现为彼此平行的实长线,而在另一投影面上的投影,只表现为一条直线或曲线,那么这时可以应用平行线.如果一锥体(或锥体的一部分)在某投影面上的投影,其轴线反映实长,而锥体的底面又垂直于该投影面,这时具备应用放射线展开法的最有利条件(“最有利条件”并不是指必要条件,因为放射线展开法中有求实长步骤,所以不论锥体处于何种投影位置,总可以求出所有必要素线实长,进而展开锥体侧面)。3.当构件的某一平面或某一曲面在三视图中均表现为多边形,也就是说,当某一个平面或某一个曲面既不平行又不垂直于任一投影面时,应用三角形法展开。特别是作不规则形体展开图时,三角形法展开的功效更为显著。

标签: kb体育